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1. Principal and vector bundles

This chapter is an extract of [KN96], but we are following the notation of [Fec06] more closely.

1.1 Actions on the Lie groups
Definition 1.1.1 A left action on a Lie group G is a mapping

L :G×G 7→ G ,L :(g,h) 7→ Lg(h) (1.1)

which satisfies

Lg1 ◦Lg2 = Lg1 g2 , Le = id, (1.2)

where g,g1,g2,h ∈ G are arbitrary elements of the group G, e ∈ G is the identity of the group
and “id” is the identity mapping on G. Right action R is defined analogously, the only difference
being the requirement

Rg1 ◦Rg2 = Rg2 Rg1 . (1.3)

R On any Lie group, canonical left and right actions are defined by

Lg(h) = gh, Rg(h) = hg. (1.4)

If not stated otherwise, by actions Lg, Rg we will always mean these canonical actions.

Exercise 1.1 Show that mappings (1.4) are indeed left/right actions in the sense of definition
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1.1.1. Show that another canonical actions are

Lg(h) = hg−1, Rg(h) = g−1 h. (1.5)

�

Definition 1.1.2 Action L is called
• free, if Lg1(h) = Lg2(h) implies g1 = g2;
• transitive, if for any h1,h2 ∈ G there exists g ∈ G such that h2 = Lg(h1).
Moreover, a left action induces the equivalence relation between elements of G: two

elements g,h ∈ G are equivalent, if there exists m ∈ G such that Lm(g) = h.

Similar terminology applies to the right action.

Exercise 1.2 Prove that the condition that action L is free is equivalent to:

if Lgh = h for some h, then g = e. (1.6)

In other words, action L is free if the mapping Lg, for g 6= e, does not have any fixed point. �

1.2 Principal bundles
As we saw in the definition 1.1.2, the existence of an action (say, left) introduces the equivalence
relation between the points of the Lie group. We may use standard notation of the set theory, i.e.

g∼ h ≡ ∃m ∈ G : h = Lm(g) (1.7)

for the relation itself, and symbol

[g] = {h ∈ G | h∼ g} (1.8)

for the equivalence class. In other words, [g] is the set of all points which can be reached from g by
the action L. The existence of relation ∼ allows us to form a quotient set G/∼ which is a set of all
(distinct) equivalence classes:

G�∼= {[g] | g ∈ G} . (1.9)

Mapping π : G 7→ G�∼ defined by

π : g 7→ [g] (1.10)

is called a canonical projection.
For a transitive group all elements are equivalent and therefore the factorization collapses

entire group into a single point [e]. Otherwise, the quotient set consists of “fibers” foliating the
entire group. This is the geometrical idea behind the principal G–bundles. Geometrically, we take
the manifold M and attach a fiber to each point of M. There is a natural action of the group on
each fiber, and all together all fibers (at all points) form a higher dimensional manifold P which is
naturally foliated by the fibers.

Definition 1.2.1 Principal bundle is a triple (P,G,R,M) where P is a manifold called total
space, G is a Lie group called structure group, R is a free right action of G on P, and M is a
manifold such that:

1. M is the quotient space M = P�∼ (∼ is equivalence relation induced by the action R on
P) and the canonical projection π : P 7→M is differentiable;
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2. P is locally trivial, i.e. for any x ∈M there exists a neighborhood U , x ∈U ⊂M, such that
π−1(U) is isomorphic to U×G,

π
−1(U)∼=U×G, (1.11)

where by isomorphism we mean a mapping ψ : π−1(U) 7→U×G which maps u∈ π−1(U)
into (π(u),ϕ(g)), where ϕ : π−1(U) 7→ G satisfies

ϕ(Rgu) = ϕ(u)g. (1.12)

R Mapping ψ of definition 1.2.1 is called local trivialization. The definition means that locally
any element u ∈ P can be written in the form (x,g), where g is an element of the structure
group G. In order to ensure consistency, the right action Rh must map u into an element of
the form (u,gh).
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2. Summary of the 2-spinor formalism

In this chapter we review basic formulae of the 2-spinor formalism in general relativity. Full
treatment with geometrical motivation and detailed discussion can be found in [PR84]. For
introduction to spinors at more “practical” level, see [Ste93] and [ODo03]. General theory of
spinors (not just 2-spinors) with the physical applications is nicely reviewed in [BT87], geometrical
background on connections and Dirac operator can be found in [Fec06].

2.1 Definition of 2-spinors
Spinors are elements of certain vector space equipped with the so-called symplectic form. Their
physical relevance stems from the fact that spinors can be related to the tensors on the space-time
(in contrast to tensors on abstract manifolds, tensors on the space-time which represent physical
quantities are called world-tensors)) and that the Lorentz group can act on the space of spinors,
i.e. the space of spinors is a representation space of the Lorentz group. In this section we will
regard the spinor merely as an element of the aforementioned vector space and its relation to the
world-tensors will be discussed subsequently.

Definition 2.1.1 A spinor space is a pair (S,ε) two-dimensional vector space S over the field of
complex numbers C equipped with the mapping ε : S×S 7→ C called symplectic form satisfying
the following properties:
• linearity in the first argument

ε(ξ +λ η , ·) = ε(ξ , ·)+λ ε(η , ·), ξ ,η ∈ S, λ ∈ C; (2.1)

• antisymmetry

ε(ξ ,η) =−ε(η ,ξ ); (2.2)

• non-degeneracy

if ε(ξ ,η) = 0 for all η ∈ S, then ξ = 0. (2.3)
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Elements of S are called spinors.

R Linearity together with antisymmetry implies that ε is in fact linear in both arguments, i.e.
bilinear.

R Symplectic form introduced in definition 2.1.1 is a bi-linear antisymmetric mapping from
S×S to C, so it is a 2-form on S, i.e. ε ∈ Λ2(S). Since the dimension of space of p-forms on
vector space L of dimension n is, in general,

dimΛ
p(L) =

(
n
p

)
, (2.4)

the space of two-forms on two-dimensional spinor space is dimΛ2(S) = 1. That is, for given
(S,ε), all two-forms on S have the form λ ε , λ ∈ C. This fact will play a crucial role in
algebraic decomposition of the spinors.

R From an algebraical point of view, the most important property of the symplectic form ε is
its non-degeneracy. This property ensures that for any non-zero spinor ξ ∈ S there exists a
spinor η ∈ S such that ε(ξ ,η) 6= 0. This is somewhat analogous to the metric tensor g on
a vector space L, which is also non-degenerate and hence admits an inverse g−1 such that
gabgbc = δ a

c . Metric g introduces an isomorphism between spaces L and L?, i.e. between the
vector space and its dual. The same holds for ε : it introduces an isomorphism between S and
S? and hence we are allowed to raise and lower the indices using ε and its inverse ε−1. The
crucial difference between metric g and symplectic form ε is that the former is symmetric,
while the latter is antisymmetric. This, in turn, means that the “scalar product” provided by ε

is anticommutative.

Definition 2.1.2 Given a spinor space (S,ε) and any two spinors ξ ,η ∈ S, number ε(ξ ,η) is
called the symplectic product of spinors ξ and η . Sometimes we use the notation

[ξ ,η ]≡ ε(ξ ,η). (2.5)

R By definition 2.1.1 of the symplectic form, the symplectic product is antisymmetric, i.e.
[ξ ,η ] =−[η ,ξ ].

Exercise 2.1 Prove the following statement: two spinors ξ ,η ∈ S are linearly dependent if, and
only if, [ξ ,η ] = 0.

(Hint: S is 2-dimensional. Direction→: linear dependence means η = λ ξ , antisymmetry
then implies [ξ ,η ] = 0. Direction ← (by contradiction): assume [ξ ,η ] = 0 with ξ ,η inde-
pendent (i.e., constituting a basis of S), non-degeneracy implies the existence of ζ such that
[ξ ,ζ ] 6= 0, but ζ must be combination of ξ and η , so [ξ ,ζ ] 6= 0 is impossible.) �

Definition 2.1.3 A linear mapping φ : S 7→ S on the spinor space (S,ε) is called symplectomor-
phism if it preserves the symplectic form in the sense

[φ(ξ ),φ(η)] = [ξ ,η ] for any ξ ,η ∈ S. (2.6)

The group of all symplectomorphisms on S is called the symplectic group Sp(S).

It will turn out that for vector space S of dimension 2, the symplectic group Sp(S) is isomorphic
to group SL(2,C) which is a covering group of the Lorentz group.
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2.2 Abstract index notation
In what follows we will occasionally employ the geometrical, “index-free” notation but most of
the time we employ the abstract index notation developed by Penrose (see [PR84] for a detailed
discussion). In this notation we introduce an infinite set of copies of original vector space S and
label them by the elements of the set of indices. For spinors, the set of indices is

I = {A,B,C, . . .X ,Y, . . .}, (2.7)

where we usually use only a small number of these symbols, but in principle the set of indices must
be infinite in order to allow for arbitrarily complicated expressions. Now, for any α ∈I we define
the vector space

Sα = {(ξ ,α)|ξ ∈ S}, α ∈I . (2.8)

Thus, Sα is a (n isomorphic) copy of original vector space S but each vector is labeled by index α .
Instead of writing (ξ ,α) we will use the symbol ξ α .

We emphasize that the index α ∈ I here does not acquire numerical values like in, e.g.,
relativity, where in the expression vµ we automatically mean that µ acquires values µ = 0,1,2,3.
Instead, α is just a marker indicating which vector space spinor ξ α belongs to. Thus, ξ α ∈ Sα

but ξ α 6= Sβ , provided that α 6= β ; for example, ξ A ∈ SA, but ξ A 6= SB. In particular, we cannot
add spinors ξ A and ηB, because they are elements of different vector spaces. Moreover, we have
canonical isomorphisms between spaces Sα and Sβ so that vector ξ α has its unique counter-part in
Sβ .

Associated with each Sα is its dual space which is the space of linear functionals on Sα . Dual
space of S is denoted by S? and its elements, dual spinors, are mappings ζ : S 7→C. The isomorphic
copies of S? will be denoted by Sα , α ∈I , i.e.

SA,SB,SC, . . . ,SX ,SY , . . . (2.9)

Elements of Sα will carry the same index, i.e. ζA ∈ SA,ζB ∈ SB etc. An element ζα ∈ Sα is then a
linear mapping

ζα : Sα 7→ C : ξ
α 7→ ζα(ξ

α) ∈ C. (2.10)

It is clear that, say, ζA cannot act on any spinor ξ B because ζA is a linear functional on SA, while
ξ B belongs to SB. Thanks to the linearity of dual spinors it is then redundant to write the brackets.
Hence, we can omit them and write ζAξ A instead of ζA(ξ

A). No confusion can arise because the
indices keep track of which functional is acting on what.

This is the main upshot of the abstract index notation (which equally applies to tensors as
well). On the one hand, it is coordinate-free like usual geometrical language. We are not talking
about the components of spinors (tensors) with respect some basis, we are talking about the objects
themselves. Hence, in the abstract index notation ζA(ξ

A) is equivalent to “geometer’s notation”
ζ (ξ ). At the same time, the abstract index notation resembles the “relativist’s” index notation,
where ζA stands for the pair of components ζ0 and ζ1. Hence, abstract index notation has the full
advantage of index notation which is preferred for practical calculations, but it is also manifestly
basis-independent like the index-free notation.

These considerations readily extend to all tensorial operations. The tensor product of multiple
copies of S and S? in the index-free notation is

T P
q (S) = S?⊗·· ·⊗S?︸ ︷︷ ︸

p

⊗S⊗·· ·⊗S︸ ︷︷ ︸
q

. (2.11)
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The set T p
q (S) is in fact the vector space of tensors of rank (p,q) over the vector space S. In the

abstract index notation we denote

Sα...β
γ...δ = Sα ⊗·· ·⊗Sβ ⊗Sγ ⊗·· ·⊗Sδ , (2.12)

where all the indices α, . . . ,β ,γ, . . .δ ∈I must be different. Elements of Sα...β
γ...δ will be denoted

by ξ
α...β

γ...δ . So, for example, spinor ξ AB
C of valence (2,1) is a mapping

ξ
AB

C : S C
AB 7→ C : (αA,βB,η

C) 7→ ξ
AB

C αA βB η
C. (2.13)

We can also define the tensor product of spinors. For the two spinors of arbitrary valence

ξ
α...β

γ...δ , η
ρ...σ

µ...λ (2.14)

we define their tensor product as a spinor

(ξ ⊗η)
α...βρ...λ

γ...δ µ...λ ≡ ξ
α...β

γ...δ η
ρ...σ

µ...λ (2.15)

defined by its action on appropriate number of spinors and dual spinors as

(ξ ⊗η)
α...βρ...λ

γ...δ µ...λ (uα , . . . ,vβ , ũρ , . . . , ṽλ ,w
β , . . . ,zγ , w̃µ , . . . , w̃λ ) =

=
(

ξ
α...β

γ...δ uα . . .vβ wβ . . .zγ

)(
η

ρ...σ
µ...λ ũα . . . ṽβ w̃β . . . z̃γ

)
, (2.16)

where

u, . . . ,v, ũ, . . . , ṽ ∈ S, w, . . . ,z, w̃, . . . , s̃ ∈ S?. (2.17)

One of the advantages of the index formalism is a possibility to express several symmetry
operations in a compact way. As it is usual, we define the symmetric part and antisymmetric part of
a spinor ξα1...αp , respectively, by

ξ(α1...αp) =
1
p! ∑

σ

ξσ1...σp , ξ[α1...αp] =
1
p! ∑

σ

signσ ξσ1...σp , (2.18)

where the sum goes through all permutations σ of the set {α1, . . . ,αp} and signσ is the sign of σ .
In particular, we have

ξ(αβ ) =
1
2
(
ξαβ +ξβα

)
, ξ[αβ ] =

1
2
(
ξαβ −ξβα

)
. (2.19)

The space of symmetric (antisymmetric) spinors will be denoted by S(αβ ) (S[αβ ]).

R So far, we said that the abstract indices A,B, . . . form a set of indices I and arbitrary elements
of this set were denoted by α,β , . . . . The purpose was to emphasize that in the formulae
above hold for any abstract indices from the set A . However, in what follows we simplify
the notation and use particular abstract indices. That is, instead of writing Sα , where α ∈A ,
we will write simply SA and it will be automatically understood that arbitrary abstract index
can be substituted.

An important example of a spinor is the identity mapping. In non-abstract formalism we use the
so-called Kronecker symbol δ B

A which is a unit matrix. In the abstract index formalism, we regard
the Kronecker symbol as a mapping

δ
A
B : SA⊗SB 7→ C (2.20)
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defined by

δ
A
B : (ξA,η

B) 7→ δ
A
B ξA η

B = ξA η
A. (2.21)

This of course resembles usual relation for Kronecker delta, but the interpretation is slightly
different, since δ A

B is now not a matrix (set of numbers) bu an abstract mapping which maps a
spinor and a dual spinor to a complex number (equal to the contraction of the two spinors).

Exercise 2.2 Show formally that δ A
B can be regarded as the aforementioned canonical isomor-

phism SB 7→ SA or SA 7→ SB and the following relations hold:

δ
A
B : ξ

B 7→ ξ
A, δ

A
B : ηA 7→ ηB, (2.22)

justifying the name “identity map”. �

An example of the antisymmetric spinor is the symplectic form. In the abstract index notation,
εAB is regarded as an element of the space S[AB] and its action on a pair of (univalent) spinors is

ε ∈ S[AB] : SAB 7→ C : (ξ A,ηB) 7→ εABξ
A
η

B ∈ C. (2.23)

Its antisymmetry is expressed by the relation εAB =−εBA.

Exercise 2.3 Show that εAB can be regarded as a canonical isomorphism of spaces SA and SB

defined by

εAB : SA 7→ SB : ξ
A 7→ εAB ξ

A ∈ SB. (2.24)

�

Thanks to the isomorphism introduced in the exercise 2.3 we can lower the index of a spinor
ξ A according to the rule

ξB = εAB ξ
A. (2.25a)

Since this mapping is an isomorphism, it has an inverse which is defined by

ξ
A = ε

AB
ξB, (2.25b)

where εAB ∈ S[AB] is a mapping satisfying

ε
AB

εBC = δ
A
C . (2.25c)

This is very similar to raising/lowering indices via metric tensor in tensor algebra, but here, due
to antisymmetry of the symplectic form, one must be careful about the order of the indices. In
particular, εABξ B =−εBAξ B =−ξA.

2.3 Spin basis
Although for general purposes it is useful to use abstract index notation and, hence, avoid the
possible dependence of the formulae on a particular choice of the basis. Nevertheless, sometimes
we need to introduce a particular basis. This happens, for example, if the problem we study has
some symmetry so that the basis respecting this symmetry can simplify relevant equations. Naive
counting of degrees of freedom shows that the spinor space S has the same dimensionality as the
tangent space of the space-time. The former has complex dimension 2 while the latter has real
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dimension 4. Thus, as real vector spaces, they both have dimension 4 and hence are isomorphic.
Later we will show that also the Lorentz group acts on the spinor space naturally which makes the
correspondence between world-tensors and spinors interesting.

In the space-time tangent space we often choose an orthonormal basis. By exercise 2.1 we
know that the basis of S cannot be orthonormal, i.e. we cannot require [ξ ,η ] = 0 because that
would immediately mean that ξ and η are linearly dependent and, hence, would not form a basis.
In other words, for any two basis spinors their symplectic product must be non-zero. Thus, the next
most natural thing is to normalize them to unity.

Definition 2.3.1 Two spinors o, ι ∈ S form a spin basis if

[o, ι ] = 1. (2.26)

R In the abstract index notation, condition (2.26) reads

εAB oA
ι

B = 1, (2.27)

or, using the rule (2.25a),

oA ι
A =−oA

ιA = 1 (2.28)

R Instead of spin basis, the term spin dyad is often employed. This is consistent with calling a
basis of four-dimensional vector space the tetrad.



3. Newman–Penrose formalism

3.1 Newman–Penrose null tetrad
Definition 3.1.1 A Newman–Penrose null tetrad is a four-tuple of vectors (`a,na,ma, m̄a) which
satisfy

`ana = 1, ma m̄a =−1, (3.1)

and all remaining contractions are zero (in particular, all vectors are null); vector m̄a is a complex
conjugate of ma, while `a and na are real.

R In the Newman–Penrose tetrad, the metric tensor can be decomposed as

gab = `a nb + `b na−ma m̄b−mb m̄a. (3.2)

Definition 3.1.2 Given a Newman–Penrose null tetrad, covariant derivatives associated with
vectors forming the null tetrad are denoted by

D = `a
∇a, ∆ = na

∇a, δ = ma
∇a, δ̄ = m̄a

∇a. (3.3)

R The covariant derivative can be decomposed, with the help of (3.2), as

∇a = gb
a∇b = `a ∆+na D−ma δ̄ − m̄a δ . (3.4)

Exercise 3.1 Show that if (oA, ιA) is a spin basis, then vectors defined by

`a = oA ōA′ , na = ι
A

ῑ
A′ , ma = oA

ῑ
A′ , m̄a = ι

A ōA′ , (3.5)
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comprise a null tetrad. �

3.2 Spin coefficients and connection

The spin coefficients are defined as follows (table adopted from [Ste93]):

∇ oA∇oA oA∇ιA ιA∇ιA

D κ ε π

∆ τ γ ν

δ σ β µ

δ̄ ρ α λ

Thus, for example, κ = oADoA. The definitions of the spin coefficients imply the following relations
for covariant derivatives of basis spinors:

DoA = ε oA−κ ιA, (3.6a)

DιA = π oA− ε ιA, (3.6b)

δoA = β oA−σ ιA, (3.6c)

διA = µ oA−β ιA, (3.6d)

∆oA = γ oA− τ ιA, (3.6e)

∆ιA = ν oA− γ ιA, (3.6f)

δ̄oA = α oA−ρ ιA, (3.6g)

δ̄ ιA = λ oA−α ιA. (3.6h)

Tensor equivalents of the definitions of the spin coefficients are

κ = maD`a = oADoA, τ = ma
∆`a = oA

∆oA, (3.7a)

σ = ma
δ`a = oA

δoA, ρ = ma
δ̄`a = oA

δ̄oA, (3.7b)

π = naDm̄a = ι
ADιA, ν = na

∆m̄a = ι
A
∆ιA, (3.7c)

λ = na
δ̄ m̄a = ι

A
δ̄ ιA, µ = na

δ m̄a = ι
A
διA, (3.7d)

ε =
1
2
[naD`a− m̄aDma] = ι

ADoA, (3.7e)

β =
1
2
[na

δ`a− m̄a
δma] = ι

A
δoA, (3.7f)

γ =
1
2
[na

∆`a− m̄a
∆ma] = ι

A
∆oA, (3.7g)

α =
1
2
[
na

δ̄`a− m̄a
δ̄ma

]
= ι

A
δ̄oA, (3.7h)

The spin coefficients (3.7) allows one to express the directional covariant derivatives of the tetrad
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vectors; these are called the transport equations:

D`a = (ε + ε̄)`a− κ̄ ma−κ m̄a, (3.8a)

∆`a = (γ + γ̄)`a− τ̄ ma− τ m̄a, (3.8b)

δ`a = (ᾱ +β )`a− ρ̄ ma−σ m̄a, (3.8c)

Dna =−(ε + ε̄)na +π ma + π̄ m̄a, (3.8d)

∆na =−(γ + γ̄)na +ν ma + ν̄ m̄a, (3.8e)

δna =−(ᾱ +β )na +µ ma + λ̄ m̄a, (3.8f)

Dma = π̄ `a−κ na +(ε− ε̄)ma, (3.8g)

∆ma = ν̄ `a− τ na +(γ− γ̄)ma, (3.8h)

δma = λ̄ `a−σ na +(β − ᾱ)ma, (3.8i)

δ̄ma = µ̄ `a−ρ na +
(
α− β̄

)
ma. (3.8j)





4. Optical scalars

As a first application of the spinor and Newman–Penrose formalism we discuss the so-called optical
scalars. It is a set of scalar quantities which characterize the behavior of null geodesics in curved
space-times. As emphasized before, in the analysis of the geometry of a certain space-time, it is
important to distinguish the coordinate-dependent behavior, like the singularity of the Schwarzschild
metric on the horizon, and behavior which is independent of coordinates. The Newman–Penrose
null tetrad is not unique and at each point of the space-time we can choose it in an arbitrary way. In
this sense, the choice of the Newman–Penrose tetrad is as arbitrary as the choice of the coordinates.
However, in many cases, there is a preferred choice of a tetrad. For example, the principal null
directions of the Weyl tensor can be used to define a null tetrad. In particular, in type D space-times,
which has two principal null directions, it is natural to define the spin basis in such a way that the
basis spinors oA and ιA define the two principal null directions,

`a = oA ōA′ , na = ι
A
ῑ

A′ . (4.1)

With this choice, the only non-vanishing Weyl scalar is Ψ2 which simplifies the analysis signifi-
cantly.

Nevertheless, even in the case of algebraically general space-times, we often study some given
null congruence. It may be, for example, identified with the direction of propagation of gravitational
radiation. In such a case, we naturally choose one of the vectors of the null tetrad (`a or na) to be
tangent to that congruence. Then, there is still some freedom in the choice of remaining Newman–
Penrose vectors, but already the fact that `a (or na) is a null geodesic simplifies some of the spin
coefficients.

The study of null geodesics is of particular interest in general relativity. We know that null
rays separate the regions of events which can be causally related (i.e. they are time-like separated)
and the region of events where no causal relation is possible (i.e. they are space-like separated).
In this sense, null geodesics define the causal structure of the space-time. In order to understand
the causal structure, it is instructive to analyze the behavior of null geodesics. For example, on
the event horizon of a black hole, all null geodesics are converging (hence, the event horizon is a
trapped surface) which is an indication of the singularity below the event horizon.
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There are basically three kinds of behavior of null geodesics: convergence/divergence, shear
and twist. The purpose of this chapter is to explain what these terms mean and how they are
conveniently encoded in the Newman–Penrose spin coefficients. In order to see this, we will
employ the spinor formalism.

4.1 Expansion, shear, twist
Consider an affinely parametrized null geodesic congruence with the tangent vector `a; thus, D`a =
in the Newman–Penrose formalism. Now, choose a (three-dimensional) hypersurface Σ which is
everywhere transversal to the congruence (i.e. not parallel). Then, at each point P ∈ Σ we can
choose a spinor oA such that `a = oAōA′ and propagate this spinor along `a by the condition DoA = 0.
By (3.6), the latter condition implies

ε = 0, κ = 0. (4.2)

In addition, at each point P ∈ Σ we complete oA to the spin basis (oA, ιA) an propagate the spinor
ιA along the congruence by the condition DιA = 0 which, again by 3.6, implies

π = 0. (4.3)

R Notice that although we assume D`a = 0, this does not mean that ε = 0, for this we indeed
need the condition DoA = 0. Which weaker condition is implied by D`a = 0?

Now, at each point of the space-like hypersurface Σ we choose a vector za which is orthogonal
to `a. We propagate it along `a by the condition £`za = 0, i.e. we require that za be Lie-constant
along `a. In other words, we choose a vector field za orthogonal to `a on Σ and Lie drag it along the
congruence, so that the field za commutes with `a at each point,

£`za = [`,z]a = 0. (4.4)

For a given congruence `a, vector za which commutes with `a is called the connecting vector,
and it can be interpreted like a vector which points to a neighboring geodesic of the congruence.
Commutation of vectors `a and za is expressed as Dza− zb∇bza = 0. Then, za remains orthogonal
to `a at each point of the congruence, since we have

£`(`a za) = D(`a za) = za D`a︸︷︷︸
0

+ `aDza︸ ︷︷ ︸
`azb∇b`a

= `azb
∇b`

a =
1
2

zb
∇b (`

a`a)︸ ︷︷ ︸
0

= 0. (4.5)

Hence, we have a null geodesic congruence `a and connecting vector za which is
• everywhere orthogonal to `a;
• Lie constant along za, i.e. [`,z]a = 0.
Having defined a spin basis (oA, ιA), we can define a Newman–Penrose null tetrad via relations

introduced in the exercise 3.1, page 17. Since the Newman–Penrose tetrad is a basis of each tangent
space of the space-time, we can expand any vector field za as

za = A`a +Bna + z̄ma + zma. (4.6)

Here, A,B and z are undetermined coefficients, A,B being real and z, z̄ being mutually complex
conjugated (this relation between z and z̄ is necessary in order to make za real). However, condition
za`a = 0 immediately implies B = 0.
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`a

〈ma, m̄a〉

za

Figure 4.1: Connecting vector za can be projected onto the screen which is a vector space spanned
by ma and m̄a.

Let us discuss the geometrical interpretation of (4.6) briefly. Vector field `a is a congruence
we study and we would like to understand its behavior in terms of geometrically understandable
quantities. In order to get an intuitive picture, we introduced vector za which is everywhere
orthogonal to `a. We called it “connecting vector” because its geometrical interpretation is that
given a space-time point xµ , the neighboring geodesics is `µ(x′) = `µ(x)+ zµ . Hence, za describes
the deviation of two neighboring geodesics of the congruence. Now, in order to understand the
geometrical properties of `a, we study how this connecting vector za behaves. We expand it into a
null tetrad but because of its orthogonality to `a it has only `a and ma, m̄a components. By definition
3.1.1, ma and m̄a are orthogonal to `a. Moreover, they form a basis of space-like subspace of the
tangent space at any space-time point. Hence, we can imagine za as being projected onto the screen
which is perpendicular to `a, see Fig. 4.1.

Coordinates in the plane ma and m̄a have been denoted by z̄ and z. Since vectors ma and m̄a

comprise the basis of complexified vector space, we can regard them as complex coordinates in the
complex plane, identifying

z = x+ iy, z̄ = x− iy. (4.7)

Hence, we are interested in the time evolution of coordinates z and z̄ along the null geodesics `a. In
order to find this evolution, we calculate Dza, using the commutation of `a and za:

Dza = zb
∇b`

a. (4.8)

Now, using (4.6) (with B = 0, as explained), we find

Dza = AD`a + z̄δ`a + zδ̄`a. (4.9)
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5. Asymptotic flatness

In order to understand the structure of a physical theory it is often important to study the so-called
isolated systems. This allows one to study particular features of the theory using the simple models
without necessity to have a full solution describing entire universe in detail [Ger77]. In general
relativity it is difficult to say whether a given system is isolated or not, since the field of interest,
the metric gab, is not propagating on a given background, but also defines the background itself.
Nevertheless, the basic intuition is that if gravitating sources are localized in a finite domain, one
can “go” to infinity where the gravitational field, i.e. the curvature of the spacetime, is supposed
to decay and the metric of the spacetime should approach the flat Minkowski metric far from
the isolated source. In other words, we expect that spacetimes representing isolated sources are
asymptotically flat, i.e. flat far from the sources.

It is not obvious, though, how to decide whether a given spacetime is asymptotically flat in
the above sense. What does “infinity” mean? How do we localize it in a given coordinate system?
For example, for Schwarzschild black hole in usual coordinates it is clear that for r → ∞ the
Schwarzschild metric approaches the Minkowski metric. But the choice of the coordinates is
arbitrary. Have we defined another coordinate l = 1/r, then the infinity would be located at l→ 0.
If we compactify the coordinate r by R = arctanr, the infinity is located at R→ π/2, etc.

There are essentially two ways how to deal with this problem. The first one is to restrict the
coordinate system by additional conditions. In the original approach of Bondi et al. [BBM62;
Sac62] the coordinates xµ = (u,r,x2,x3) are adapted to a family of null hypersurface labeled by
coordinate u and r is a parameter along the generators of these hypersurfaces. If the metric in these
coordinates acquires a form which approaches the Minkowski metric for r→ ∞, spacetime is said
to be asymptotically flat.

Here we discuss in detail another approach developed by Penrose [Pen65; Pen11] that is based
on the conformal techniques. We essentially follow the textbook [Ste93]. Deeper insight into
conformal structure of spacetimes can be found in [Ger77; PR86]. A useful review paper of
conformal infinity and issues related to numerical relativity is [Fra00].
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5.1 Motivation: Minkowski spacetime
Let us consider Minkowski metric in spherical coordinates,

ds2 = dt2−dr2− r2 dΣ
2, dΣ

2 = dθ
2 + sin2

θ dφ
2. (5.1)

The ranges of the coordinates are

t ∈ (−∞,∞), r ∈ [0,∞), θ ∈ [0,π], φ ∈ [0,2π). (5.2)

Because of factor r2, metric (5.1) has a coordinate singularity for r→ ∞. First we transform the
metric to double-null coordinates u,v defined by

u = t− r, v = t + r, t =
1
2
(v+u) , r =

1
2
(v−u) , (5.3)

so that

ds2 = dudv− 1
4
(v−u)2dΣ

2. (5.4)

Both u,v ∈ (−∞,∞), but because of r ≥ 0 there is a constraint

v≥ u. (5.5)

We compactify the ranges of u and v by introducing new coordinates

U = arctanu, V = arctanv, (5.6)

in which the metric acquires the form

ds2 =
1

cos2U cos2V

(
dU dV − 1

4
sin2(V −U)dΣ

2
)
. (5.7)

The ranges are now

−π

2
≤U ≤ π

2
, −π

2
≤V ≤ π

2
, V ≥U. (5.8)

Metric (5.7) still has a singularity at infinity, i.e. for values U,V =±π/2. An important observation
is that in this form, the singularity is a common factor in front of the expression which is perfectly
regular at infinity. Penrose’s trick is therefore to introduce a new, unphysical metric by a conformal
rescaling of the physical metric. Conformal rescaling is a transformation

d̂s
2
= Ω

2 ds2 (5.9)

with the conformal factor

Ω
2 = 4 cos2U cos2V, (5.10)

so that the unphysical metric becomes

d̂s
2
= 4dU dV − sin2(V −U)dΣ

2. (5.11)

This metric does not represent the Minkowski spacetime anymore. However, conformal transfor-
mations preserve the angles and norms of null vectors. Therefore, it preserves the null cones and,
hence this new spacetime has the same causal structure as the Minkowski spacetime. The advantage
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R

T

U ∈ (−π/2, π/2)

−π

π

π

V ∈ (−π/2, π/2)

Figure 5.1: Ranges of coordinates in the unphysical Minkowski spacetime

is that metric (5.11) is regular everywhere in the spacetime and, in particular at infinity and, thus,
infinity of Minkowski spacetime is a set of well-defined points in the new unpysical spacetime.

It is convenient to switch from the double-null coordinates U,V back to temporal and radial
coordinates T,R by

T =V +U, R =V −U, (5.12)

in which the metric reads

d̂s
2
= dT 2−dR2− sin2 RdΣ

2, (5.13)

and the ranges of coordinates are

−π ≤ T ≤ π, 0≤ R≤ π. (5.14)

Hence, in addition to the Minkowski spacetime (M,g) equipped with the line element ds2 we

introduced the unphysical spacetime (M̂, ĝ) with the line element d̂s
2

and a mapping

ψ : M 7→ M̂ (5.15)

whose coordinate expression is

ψ(t,r,θ ,φ) = (arctan(t + r)+ arctan(t− r), arctan(t + r)− arctan(t− r), θ ,φ) . (5.16)

The two metrics are related by a conformal rescaling, i.e.

ψ
∗ĝ = Ω

2 g, (5.17)

where ψ∗ is a pull-back from M̂ to M. Since the range of coordinates (U,V ) is finite, we can
represent the unphysical spacetime in a finite region as in Figure 5.1.

Exercise 5.1 Show that (timelike) lines of constant r in Minkowski spacetime mapped to M̂
are curves which for t→−∞ start at the point (T,R) = (−π,0) and for t→ ∞ end at the point
(T,R) = (π,0). The starting point is called past timelike infinity i−, the ending point is called
future timilike infinity i+. �
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i+

i−

i0

I+

I−

Figure 5.2: Unphysical Minkowski spacetime with coordinate θ suppressed.

Exercise 5.2 Show that (spacelike) lines of constant t in Minkowski spacetime mapped to M̂
are curves which for r = 0 start at the point (T,0), where T is given by (5.16), and for r→ ∞

end at the point (T,R) = (0,π). This point is called spatial infinity i0. �

R Notice that with respect to metric ĝ given by (5.13), i0 is in fact a sphere of a zero radius, i.e.
just a point.

Exercise 5.3 Now consider light rays. Outgoing null lines in Minkowski spacetime can be
parametrized by t = r+ const., which means that such light rays are lines of constant u(U).
Similarly, ingoing rays are lines of constant v (V ). Show that in M̂, outgoing light rays extended
to past/future infinity are straight lines intersecting surfaces V = ∓π/2, while ingoing rays
extended to past/future infinity are straight lines intersecting surfaces U = ∓π/2. The line
V = π/2 is called future null infinity I +, the line U =−π/2 is past null infinity. These lines
meet at spatial infinity i0. �

The figure 5.1 is misleading in the sense that the actual spacetime is 4-dimensional, so that
each point inside the triangle is in fact a 2-sphere of radius sin2 R. Since we cannot plot a truly
4-dimensional picture, we have to suppress one dimension by, e.g., setting θ = π/2 and rotate the
whole triangle around the axis T , obtaining so the Figure 5.2. However, this figure is misleading
for another reason [Ste93]. We have already seen that the spatial infinity i0 is in fact a single point,
while in Figure 5.2 it looks like a circle. More appropriate picture of the spatial infinity is illustrated
in Figure 5.3. Here, i0 is a point from which the future null cone I + and past null cone I −

emanate.
In order to simplify the visualization, we usually plot the unphysical Minkowski spacetime as a

section of Figure 5.2 in the plane φ = 0 which coincides with the plane φ = π . The trajectories
discussed in the exercises above are plotted in such section in figure 5.4.

5.2 Asymptotic flatness

In the previous section we started with the Minkowski spacetime in spherical coordinates in which
we have a good intuition what the infinity is and how it is described in those coordinates. Minkowski
space is flat everywhere so it must be also asymptotically flat according to any reasonable definition.
We have found that the analysis we did in specific coordinates can be reformulated in a coordinate-
free way as we now summarize in the following definition [Ste93].
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i0

I+

I−

Figure 5.3: Appropriate visualization of causal structure near spatial infinity i0.
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I+I+

I− I+

i+
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i0i0

r = const.

t = const.

I+I+

I− I+

i+

i−

i0i0
U = const.

V = const.

a) Timelike and spacelike curves b) Null curves

Figure 5.4: Worldlines in Minkowski space mapped to the unphysical space.
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Definition 5.2.1 Physical spacetime (M̃, g̃ab) is called asymptotically simple if there exists
another manifold (unphysical spacetime) (M,gab) and a mapping ψ : M̃ 7→M satisfying the
following properties:

1. image Σ = ψ(M̃) is an open subset of M;
2. metrics of the two manifolds are related by a conformal rescaling

ψ
∗gab = (ψ∗Ω)2 g̃ab, (5.18)

where Ω : M 7→ R is a real function on M;
3. Ω = 0 on the boundary ∂Σ, but its gradient is non-vanishing there,

Ω|∂Σ = 0, dΩ|∂Σ 6= 0. (5.19)

4. the image of each null geodesic in M̃ has two endpoints on ∂Σ.
The unphysical spacetime (M,gab) is sometimes called the asymptote of the physical spacetime
(M̃, g̃ab).

R Here we denote the physical spacetime by M̃ and the unphysical one by M. The reason is that
in what follows we will work mostly in the unphysical spacetime and we wish to omit the
tildas as much as possible.

R For notational convenience, we will usually omit the mapping ψ (and pull-back ψ∗) from the
equations. We will assume that ψ : M̃ 7→ Σ is a bijection and therefore we can drag tensor
fields form M̃ to M (and vice versa) freely. Hence, we simply write gab = Ω2 g̃ab. For the
same reason we can use the same abstract indices for tensor fields living on M̃ and M. Also
we will not distinguish between Σ = ψ(M̃) and M̃ itself and we will freely use ∂M̃ for the
boundary of Σ.

R In Equation (5.19) we use the symbol dΩ for the gradient, although in the abstract index
formalism we would prefer the notation ∇aΩ. We did not specify the connection on M so
far, hence we use the connection-independent version. Nevertheless, the object ∇aΩ does not
depend on a specific choice of the connection, since Ω is a scalar function.

R Condition 3 can be easily verified for the conformal factor (5.10). More generally, the
purpose of this requirement is to identify the infinty of the physical spacetime in a coordinate
independent way: infinity of the spacetime is the set of points where the conformal factor
vanishes. In the other hand, we will use the conformal factor to construct a coordinate system
in the neighborhood of infinity. For that we need that Ω vanishes at infinity, but it is non-zero
in the neighborhood, in other words, gradient of Ω must be non-zero so that Ω can be used as
a coordinate.

While the requirement 4 of Definition 5.2.1 works for the Minkowski spacetime, it is too strong
for spacetimes of physical interest. Indeed, in spacetimes containing black holes there will exist
null geodesics which emanate from I − but end up in singularity, and hence never reach I +. The
purpose of this condition is to ensure that null infinity can be reached by some null geodesics. In
order to include black hole spacetimes, we have to weaken the definition.
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Definition 5.2.2 Spacetime (M̃, g̃) is called weakly asymptotically simple if there exists asymp-
toticaly simple spacetime (Ñ, h̃ab) with the asymptote (M,gab) such that there is an open
neighborood U ⊂ Ñ of ∂ Ñ which is isometric to an open set in M̃. Asymptote (M,gab) is then
by definition also the asymptote of M̃.

R The last definition can be rephrased as follows: spacetime is weakly asympotically flat, if
the neighborhood of its infinity coincides with a neighborhood of some spacetime which is
asymptotically simple in a strong sense.

R Weakly asymptotically simple spacetimes will be referred to as asymptotically flat spacetimes.
For mathematical purposes it is important to distinguish asymptotically simple and weakly
asymptotically simple spacetimes but from a physical point of view, both definitions capture
the physical intuition that spacetime far from the isolated source is flat.

R In [Ste93], the Definition 5.2.1 includes also condition on the Ricci tensor of physical
spacetime near infinity. In this text, we will specify these conditions later.

R Notice that the choice of the conformal factor is not unique. Indeed, if (M,gab) is an asymptote
of (M̃, g̃ab) where gab = Ω2 g̃ab, then any conformal factor of the form

Ω̂ = θ Ω, (5.20)

where θ is a strictly positive function will again satisfy the requirement 3 of Definition 5.2.1.
We call the rescaling of the conformal factor of the form (5.20) the gauge freedom in the
choice of the conformal factor.

5.3 Conformal transformations
In order to analyze asymptotic properties of an asymptotically flat physical spacetime M̃ it is
convenient to work in its asymptote M, since there the infinity of M̃ is represented by a boundary of
subset M̃, but otherwise this infinity is a well-defined set with regular metric where nothing special
happens. Hence, we can analyze the properties of the infinity by local techniques. In this section
we therefore introduce the connection ∇a on M and associated curvature tensors. We will work
mostly in the spinor formalism in which many formulas look simpler.

5.3.1 Covariant derivative
We consider the conformal rescalings of the metric, i.e. the transformations of the metric in the
form

gab = Ω
2 g̃ab, gab = Ω

−2 g̃ab. (5.21)

Since the spinor equivalent of the metric is the symplectic form εAB,

gab = εAB εA′B′ , (5.22)

and since Ω is a real function by definition, we have to prescribe the conformal transformation of
the symplectic form by relations

εAB = Ω ε̃AB, ε
AB = Ω

−1
ε

AB. (5.23)
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First we need to define the connection in the unphysical spacetime. We assume that the
connection ∇̃a in the physical spacetime is the usual Levi-Civita connection satisfying ∇agbc = 0.
In the spinor form,

∇̃AA′ ε̃BC = 0. (5.24)

Analogously, in the unphysical spacetime we define the Levi-Civita connection ∇a compatible with
gab,

∇AA′εBC = 0. (5.25)

Similarly to the tensor analysis, any two connections are related by

∇̃AA′ξB = ∇AA′ξB +ϒBA′ ξA. (5.26)

The form of ϒAA′ is found in a way completely analogous to the tensorial case. Imposing (5.23) and
(5.25), we have

∇AA′εBC = ε̃BC ∇AA′Ω+Ω
(
∇̃AA′ ε̃BC−ϒBA′ ε̃AC−ϒCA′ ε̃BA

)
. (5.27)

Using (5.24) we find

ε̃BC∇AA′Ω = Ω(ϒBA′ ε̃AC +ϒCA′ ε̃BA) . (5.28)

Next we rewrite the last equation with cyclic permutations of indices (ABC,BCA,CAB), obtaining
three equations. We add the first two of them and subtract the third:

2ΩϒBA′ ε̃AC = ε̃BC ∇AA′Ω− ε̃CA ∇BA′Ω+ ε̃AB ∇CA′Ω. (5.29)

Contracting with ε̃AC we finally find

ϒAA′ = ∇AA′ lnΩ. (5.30)

Since the mapping ψ identifies the physical spacetime and the (portion of the) unpysical one,
for a scalar function it does not matter if we regard it as a function on M̃ or a function on M. Hence,
we naturally require that for scalars the covariant derivatives ∇̃a and ∇a coincide, i.e. ∇̃a f = ∇a f
for any scalar. If we additionally impose that the unphysical derivative ∇a satisfy the Leibniz rule,
we can also define the action of ∇a on a contravariant spinor µA. Let ξA and µA be arbitrary spinors,
then

∇AA′(ξB µ
B) = ∇̃AA′(ξB µ

B). (5.31)

On the one hand we have

∇AA′(ξB µ
B) = ξB∇AA′µ

B +µ
B
∇AA′ξB, (5.32)

on the other hand we have

∇̃AA′(ξB µ
B) = ξB∇̃AA′µ

B +µ
B (∇AA′ξB +ϒBA′ ξA) , (5.33)

so by comparing the last two equations we find

ξB∇AA′µ
B = ξB∇̃AA′µ

B +ϒCA′ ξA µ
C. (5.34)

Using the identity ξA = ε B
A ξB and the fact that ξB is arbitrary, we finally arrive at the relation

∇̃AA′µ
B = ∇AA′µ

B−ϒCA′ ε
B

A µ
C. (5.35)

These simple calculations lead to the following definition.
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Definition 5.3.1 Connection ∇a on the unphysical spacetime (M,gab) which is an asymptote of
asymptotically flat spacetime (M̃, g̃ab with Levi-Civita connection ∇̃a is defined by relations

1. ∇a f = ∇̃a f for any scalar function f ;
2. ∇AA′ξB = ∇̃AA′ξB−ϒBA′ ξA, where ϒa = ∇a lnΩ, for any spinor ξB;
3. ∇AA′µ

B = ∇̃AA′µ
B +ϒCA′ ε

B
A µC;

4. ∇AA′ is real, i.e. ∇AA′ = ∇AA′ ;
5. ∇a satisfies the Leibniz rule when acting on a direct product.

Exercise 5.4 Show that the action of ∇a on a co-vector αa reads

∇aαb = ∇̃aαb−αa ϒb−αb ϒa +gab αc ϒ
c, (5.36)

where, of course, ϒa = ϒAA′ . (Hint: consider a co-vector in the form αa = κA µ̄B′ , generalization
to arbitrary co-vector is trivial.) �

5.3.2 Zero rest mass equations
In spinor formalism, general massless field of spin s is described by a spinor φA...B with 2s indices.
In the source-free case, such fields satisfy the so-called zero rest mass equation (ZRM) in the
physical spacetime

∇̃
A
A′ φ̃A...B = 0, (5.37)

where φA...B is a totally symmetric spinor. In general, massless fields are conformally invariant,
because there is no natural length or time scale: with a massless particle we cannot associate a
frame of reference. Let us discuss the conformal invariance in the context of present formalism.

Definition 5.3.2 A quantity X (tensorial or spinorial) is said to have a conformal weight w if
under the conformal rescaling of the metric, gab = Ω2g̃ab, it transforms as

X̃ = Ω
w X . (5.38)

We will now show that the ZRM equation (5.37) is conformally invariant, if φ̃A...B has conformal
weight 1. Suppose that

φ̃AB...C = ΩφAB...C. (5.39)

Then,

∇̃
A
A′ φ̃AB...C = ε̃

AX
∇̃XA′ φ̃AB...C = Ω

−1
ε

AX
∇̃XA′ (ΩφAB...C) =

= Ω
−1

φAB...C∇
A
A′Ω+ ε

AX (∇XA′φAB...C +ϒAA′ φXB...C +ϒBA′ φAX ...C + · · ·+ϒCA′ φAB...X) .
(5.40)

Since the spinor φAB...C is symmetric, contraction of εAX with φ...A...X ... yields zero, which eliminates
all terms in the bracket except for the first two. Thus,

∇̃
A
A′ φ̃AB...C = Ω

−1
φAB...C∇

A
A′Ω+∇

A
A′φAB...C− ε

XA
ϒAA′ φXB...C =

= Ω
−1

φAB...C∇
A
A′Ω+∇

A
A′φAB...C−Ω

−1
φXB...C∇

X
A′Ω = ∇

A
A′φAB...C. (5.41)

Hence, the unphysical ZRM field satisfies the equation

∇
A
A′φAB...C = 0 (5.42)

and therefore equation (5.37) is conformally invariant, provided that the conformal weight of φ̃AB...C

is w = 1.
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5.3.3 Transformations of curvature spinors
Recall that in the spinor formalism we decompose all spinors into irreducible parts: totally sym-
metric part and antisymmetric part which is always proportional to εAB. This applies also to
spinor equivalents of tensors. If the tensors possess some additional symmetry, the general spinor
decomposition simplifies. In the case of the Riemann tensor, we have the following symmetries
(see [PR84; Wal84]):

1. Rabcd = R[ab][cd];
2. Rabcd = Rcdab;
3. R[abc]d = 0.

These symmetries imply that the spinor decomposition of the Riemann tensor is

Rabcd = ΨABCD εA′B′ εC′D′+ Ψ̄A′B′C′D′ εAB εCD+

+ΦABC′D′ εA′B′ εCD +ΦCDA′B′ εC′D′ εAB−
−2Λ

(
εAB εCD εA′(C′ εD′)B′+ εA′B′ εC′D′ εA(C εD)B

)
. (5.43)

The first part is the Weyl tensor,

Cabcd = ΨABCD εA′B′ εC′D′+ Ψ̄A′B′C′D′ εAB εCD, (5.44)

where ΨABCD is completely symmetric Weyl spinor. The second part is given by the real spinor
ΦABC′D′ which is related to the trace-free part of the Ricci tensor,

−2ΦABA′B′ = Rab−
1
4

gab R, (5.45)

and the trace of the Riemann tensor is carried by the scalar Λ related to the scalar curvature by

Λ =
1
24

R. (5.46)

In the spinor formalism, Einstein’s equations acquire the form

ΦABA′B′ = 4π T(AB)(A′B′), 3Λ = T a
a . (5.47)

Hence, Einstein’s equations are just algebraic relations between the curvature spinors and the
energy-momentum tensor. The role of the field equations is now played by the identities satisfied
by the Riemann tensor. The first one is the so-called Ricci identity, which is usually regarded as a
definition of the Riemann tensor,

(∇c∇d−∇d∇c)Xa =−Ra
bcdXb. (5.48)

The spinor form of the Ricci identity is

�ABξC = ΨABCD ξ
D−2Λξ(AεB)C, �A′B′ξC = ξ

D
ΦCDA′B′ . (5.49)

The second equation is the Bianchi identity

∇[pRab]cd = 0 (5.50)

which translates to

∇
A
A′ΨABCD = ∇

B′
(BΦCD)A′B′ , ∇

AA′
ΦABA′B′ =−3∇BB′Λ. (5.51)

Under conformal transformation, the irreducible parts of the Riemann tensor transform according
to formulas

Ψ̃ABCD = ΨABCD, (5.52a)

Φ̃ABA′B′ = ΦABA′B′+Ω
−1

∇A(A′∇B′)BΩ, (5.52b)

Λ̃ = Ω
2

Λ− 1
4

Ω�Ω+
1
2
(∇aΩ)(∇a

Ω). (5.52c)
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Exercise 5.5 Use the Ricci and Bianchi identities to derive formulas (5.52). �

5.4 Properties of null infinity
Properties of the null infinity depend I crucially on the presence of matter in its neighborhood.
Since we are considering asymptotically flat spacetimes, we expect that there is no source close to
infinity, but even isolated sources can emit radiation or produce fields that extend to infinity. It is
then important how fast these fields decay as one approaches I . The conformal factor Ω can be
conveniently used as a coordinate near I . Moreover, we will usually assume that all quantities in
the unphysical spacetime are regular on I .

Definition 5.4.1 We will use the notation

X = O (Ωn) (5.53)

whenever the quantity X can be expanded near I into the Taylor series of the form

X = X0
Ω

n +X1
Ω

n+1 + · · · . (5.54)

In particular, quantity X = O (1) if it is non-vanishing and regular on I . We will employ the
notation X =̇Y if the two quantities are equal on I but not necessarily elswhere. For example,
Ω=̇0.

In the case of Minkowski space we have seen that I is in fact a null hypersurface. This can
change in the presence of matter or cosmological constant (which we do not consider here), but
with sufficiently fast fall-off of the field I is null hypersurface even the presence of matter near
infinity. We will start with the simplest observation.

R We have already mentioned that we assume the regularity of unphysical quantities on I . In
particular, for now we assume that gab =O (1), i.e. the unphysical metric is non-vanishing and
non-singular on I . Next we assume that both gab and Ω have the smoothness C2 across I ,
i.e. both objects are continuously twice differentiable. This implies that unphysical curvature
tensor Rabcd (and its spinorial parts ΨABCD,ΦABA′B′ ,Λ) are O (1) on I as well.

Theorem 5.4.1 Suppose that physical scalar curvature Λ̃ vanishes at I (or, equivalently, the
trace T̃ a

a of physical energy-momentum tensor vanishes at I ). Then I is a null hypersurface.

Proof. Let us define na =−∇aΩ, so that na is orthogonal to hypersurfaces Ω = const., in particular
it is orthogonal to I . Relation (5.52c) then acquires the form

Λ̃ = Ω
2

Λ+
1
4

Ω∇ana +
1
2

na na. (5.55)

Physical curvature Λ̃ vanishes at I by assumption. Terms proportional to Ω vanish on I because
of assumed regularity of ∇aΩ and Λ. Hence, the last equation restricted to I immediately yields

na na =̇0. (5.56)

�

R In other words, nana = O (Ω) and therefore can be written in the form

na na ≡ (∇aΩ)(∇a
Ω) = Ω f for some f = O (1) . (5.57)
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Theorem 5.4.2 On I , vector na is a null geodesics.

Proof. We have

na
∇anb = (∇a

Ω)(∇a∇bΩ) = (∇a
Ω)(∇b∇aΩ) =

1
2

∇b ((∇aΩ)(∇a
Ω)) =

=
1
2

∇b(na na) =
1
2

∇b(Ω f ) =−1
2

f nb +
1
2

Ω∇b f =̇−1
2

f nb. (5.58)

Here we have used the vanishing of the torsion ([∇a,∇b]Ω = 0) and relation (5.57) and we restricted
the whole expression to I in the last step (symbol =̇). Thus, na∇anb is proportional to nb and
therefore nb is a geodesics. �

R Notice that, according to the transport equation (3.8e), na is geodesic if the spin coefficient ν

vanishes,

ν =̇0; (5.59)

here we used symbol =̇, since na is not necessarily geodesic away from I .

R Theorem 5.4.2 shows that I has topology R×K where K are “slices” of I transversal to the
orbits of the null generator na. The following theorem shows that K is in fact a topological
sphere [PR86].

Theorem 5.4.3 In asymptotically simple spacetimes for which I = I +∪I − is everywhere a
null hypersurface, the topology of the past and future null infinity is

I + ∼= I − ∼= R×S 2, (5.60)

where S 2 is two dimensional topological sphere.

Proof. For proof, see [Pen65]. �
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6. Geometry of space-like 2-surfaces

This chapter is mainly based on [Sza]. Consider a space-time M with metric gab and a two-
dimensional space-like submanifold S . That is, at each point P ∈S there exists a unit time-like
normal ta and a space-like unit normal va, thereby satisfying

ta ta =−va va = 1, ta va = 0, ta,va orthogonal to S . (6.1)

Using these two normals we can form two null vectors

`a =
1√
2
(ta + va) , na =

1√
2
(ta− va) , (6.2)

which satisfy the usual Newman–Penrose normalization `ana = 1. We will also assume

`a = oA ōA′ , na = ι
A

ῑ
A′ . (6.3)

Choosing such (non-unique) spinors oA and ιA, the basis which is tangent to S is ma = oAῑA′ and
its complex conjugate.

Definition 6.0.1 Projector onto the tangent space of S with normals ta and va satisfying (6.1)
is a tensor defined by

Π
a
b = δ

a
b − ta tb + va vb = δ

a
b − `a nb−na `b. (6.4)

Tensor τa...b
c...d is called surface tensor if

Π
a
e · · ·Πb

f Π
r
c . . .Π

s
d τ

e... f
r...s = τ

a...b
c...b . (6.5)

The choice of normals ta and va satisfying (6.1) is of course not unique. Form of the projector
(6.4) suggests the most general transformation (called gauge transformation) which preserves Πa

b.
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Theorem 6.0.1 Let S be a space-like 2-submanifold of space-time M, let ta and va satisfy
conditions (6.1), and let `a and na be given by (6.2). Then, the projector (6.4) is invariant under
the gauge transformation parametrized by single real parameter A

`a 7→ A`a, na 7→ A−1 na, (6.6)

or, in terms of ta and va,

ta 7→ ta coshϕ + va sinhϕ, va 7→ ta sinhφ + va coshφ , (6.7)

where

tanhφ =
A2−1
A2 +1

. (6.8)

Proof. Proving Eq. (6.6) is trivial, as this transformation leaves `⊗n invariant and hence also the
projector. Re-expressing ta and va as

ta =
1√
2
(`a +na) , va =

1√
2
(`a−na) , (6.9)

and performing the transformation (6.6) we arrive at

ta 7→ A+A−1

2︸ ︷︷ ︸
α

ta +
A−A−1

2︸ ︷︷ ︸
β

va. (6.10)

Obviously, α2− β 2 = 1 which means we can write α = coshφ , β = sinhφ , from which (6.8)
follows. Similarly for va. �

By T M we denote the tangent bundle of the space-time. Its restriction1 to S will be denoted
by V (S ). Hence, locally, points of V (S ) are of the form (P,ua), where P ∈S and ua ∈V a

P (S ).
Here, V a

P (S ) is a fiber of bundle V a(S ) at point P and it is isomorphic to TPM. At any point
P ∈S we can split the fiber VP(S ) into a direct sum

VP(S ) = NP(S )⊕TP(S ), (6.11)

where NP(S ) is a subspace of vectors normal to S and TP(S ) is a subspace of vectors tangent to
S . That is, any ua ∈V a

P (S ) is decomposed as

ua = α na +β τ
a, (6.12)

where na ∈ Na
P(S ) and τa ∈ T a

P (S ). Hence, the total bundle V (S ) can be itself written as the
direct sum of sub-bundles

V (S ) = N(S )⊕T (S ), (6.13)

where N(S ) is a normal sub-bundle and T (S ) is the tangent sub-bundle. These sub-bundles are
mutually orthogonal with respect to the fiber metric gab

2.

1 General bundle is denoted by π : E 7→ B, where π is the projection, E is the total space and B is the base manifold.
For B′ ⊂ B we define the restriction of bundle π : E 7→ B to B′ as a bundle π : E ′ 7→ B′, where E ′ = π−1(B′).

2We say that the space-time metric gab is fiber metric, because fibers of V (S ) are isomorphic to tangent spaces of M,
on which metric gab is defined.
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Definition 6.0.2 The Lorentzian vector bundle is a triple (V a(S ),gab,Π
a
b), where V a 7→S

is a vector bundle over a surface S , equipped with the fiber metric gab and the projection
Πa

b : V b(S ) 7→ T a(S ) onto the tangent sub-bundle of V a(S ).

R The projector Πa
b can be also regarded as the metric on the tangent sub-bundle. This induced

metric is defined by

qab = gacΠ
c
b = gab−2`(a nb) =−2m(a m̄b). (6.14)

Similarly, on the normal sub-bundle we have the induced metric

⊥qab = gab−qab = 2`(anb). (6.15)

Next, in the fibers of V (S ) with metric gab we have automatically also the volume form

εabcd = 24`[anbmcm̄d]. (6.16)

This expression is fixed by total antisymmetry, by choosing the orientation εabcd`
anbmcm̄d = 1

and by εabcdεabcd = 4! = 24. Induced volume form on T (S ) is then

εab = εabcd`
c nd =−2m[c m̄d], εabma m̄b = 1, εab ε

ab =−2. (6.17)

Similarly, induced volume form on N(S ) is

⊥
εab = mc m̄d

εcdab =−2`[anb],
⊥

εab`
a nb = 1, ⊥

εab
⊥

ε
ab =−2. (6.18)

All these objects are gauge invariant.

R We can also establish the relation between surface tensors and spinors. Let SA(S ) be a bundle
of spinors on M restricted to S and let SA′(S ) be the bundle of primed spinors. Then, we can
construct a bundle SA(S )⊗SA′(S ) which can be identified with complexified Lorentzian
vector bundle. In particular, we have the identification of Hermitian spinors with real vectors
through the soldering form σa

AA′ ,

Hermitian sub-bundle of SA⊗SA′ 7→V a : κ
AA′ 7→ σ

a
AA′ κ

AA′ . (6.19)

6.1 Connections on the Lorentzian bundle
On the Lorentzian vector bundle (V (S ),gab,Π

a
b) we can define two meaningful connections. Since

each fiber of V (S ) is equipped with the metric gab, there is a natural action of group O(1,3) on
V (S ) preserving the fiber metric. In addition to that, the projection Πa

b selects preferred sub-
bundles T (S ) and N(S ). On the former, the transformation preserving the induced metric qab is
just the spin

ma 7→ eiθ ma, m̄a 7→ e−iθ m̄a, (6.20)

i.e. the rotation in the space-like plane spanned by ma and m̄a; hence, natural group on T (S ) is
O(2). On the normal bundle, the gauge transformation preserving ⊥qab is the boost (6.6), so the
group acting on N(S ) is O(1,1).
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Definition 6.1.1 Intrinsic covariant derivative δa on V (S ) is defined by

δaXb = Π
c
aΠ

d
b∇cXd . (6.21)

R This definition extends naturally to action of δa on tensor of arbitrary rank:

δaτ
b...c
d...e = Π

f
aΠ

b
r . . .Π

c
sΠ

p
d . . .Π

q
e∇ f τ

r...s
p...q. (6.22)

That is, we first calculate usual covariant derivative and then project all indices via the
projector Πa

b.

R Clearly, δa annihilates both the fiber metric gab. However, it also annihilates the induced
2-metric qab, for we have

δaqbc = Π
p
aΠ

r
bΠ

s
c∇p(grs− `rns− `snr) = 0, (6.23)

since ∇pgrs = 0, Πr
b`r = 0, Πs

cns = 0. Hence, δa is the Levi-Civita connection for the metric
qab.

In usual 3+1 formulation of general relativity, we foliate the space-time by hypersurfaces with
unit normal na and define the projector hb

a = δ b
a −nanb and corresponding intrinsic derivative Da.

From this we can calculate the intrinsic curvature of the hypersurface. On the other hand, the
extrinsic curvature which describes how the hypersurface is embedded in the space-time is defined
as Kab = Danb.

In the present setting, we have two normals, ta and va (or, equivalently, `a and na), and hence
we have two extrinsic curvatures,

τab = δatb, νab = δavb. (6.24)

Definition 6.1.2 The Sen connection ∆a on V (S ) is defined by

∆aXb = Π
r
a∇rXb. (6.25)

R This definition extends to tensors of arbitrary rank via

∆aτ
b...c
e... f = Π

d
a∇dτ

b...c
e... f . (6.26)

That is, we calculate usual covariant derivative and then project just the index on the derivative.

In other words, both intrinsic derivative δa and the Sen derivative ∆a can act on any vector
Xa ∈V a(S ) which is not necessarily tangent. Both these connections evaluate the derivative in
the tangential derivative, because in both cases we project the direction of the derivative by Πb

a.
However, the result of intrinsic differentiation is always a surface tensor (in the sense of definition
6.0.1), while the result of ∆aXb can have also a normal component. For example, we have

∆atb = (Πc
b + tb tc− vb vc)∆atc = δatb + tb tc

∆atc︸ ︷︷ ︸
=0

−vb vc
∆atc. (6.27)

Hence, the normal component of the connection ∆a can be encoded in the connection 1-form

Aa = vc
∆atc. (6.28)



6.1 Connections on the Lorentzian bundle 45

Using this 1-form, we can write

∆atb = δatb−Aa vb, ∆avb = δavb− tb Aa. (6.29)

The extrinsic curvatures and the 1-form Aa are not gauge independent, as the following theorem
shows.

Theorem 6.1.1 Let τab, νab and Aa be defined by

τab = δatb, νab = δavb, Aa = vc
∆atc. (6.30)

Then, under the boost (6.7), we have

τab 7→ coshφ τab + sinhφ νab, νab 7→ sinhφ τab + coshφ νab, Aa 7→ Aa−δaφ . (6.31)

Proof. The proof is simple but one has to be careful. Connection δa is defined through projector
Πa

b and, hence, gauge invariant. For τab we have

τab = δatb 7→ δa (coshφ tb + sinhφ vb) = Π
c
aΠ

d
b (td sinhφ ∇cφ + coshφ∇ctd)+

+Π
c
aΠ

d
b (vd coshφ ∇cφ + sinhφ ∇cvd) = coshφτab + sinhφνab, (6.32)

and similarly for νab and Aa. �

Unlike δa, the Sen connection ∆a does not annihilate the induced metric. Instead, we have

∆aqbc = 2νa(bvc)−2τa(btc). (6.33)

Connection δa is torsion-free, as can be easily checked. This is not true for ∆a. First, we have

∆a∆bφ = ∆a (Π
c
b∇cφ) = (∆aΠ

c
b)∇cφ +Π

c
b∆a∇cφ . (6.34)

Antisymmetrization in [ab] yields

∆[a∆b]φ = ∆[aΠ
c
b]∇c, (6.35)

since Πc
b∆a∇cφ = Πc

bΠ
f
e ∇ f ∇cφ is already symmetric in (ba), provided that ∇a is torsion-free.

Defining

Qc
ab = τ

e
a tb−ν

c
a vb, (6.36)

we can write the anti-commutator as

∆[a∆b]φ =−Qc
[ab]∇cφ , (6.37)

showing that the torsion tensor of the connection ∆a.
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R The set of real numbers
C The set of complex numbers
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En Euclidean space of dimension n
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